4.7 Article

Comprehensive investigation of a broadband wearable energy harvester using adaptive kinetic energy reallocation mechanism

期刊

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2023.110907

关键词

Energy harvesting; Broadband; Energy reallocation; Wearable devices

向作者/读者索取更多资源

This paper proposes an adaptive kinetic energy reallocation (AKER) mechanism to stabilize the output power of wearable energy harvesters. The AKER manipulates the kinetic energy transfer to enhance system response, thereby achieving power stability.
Energy harvesting technology has become a crucial way to accomplish battery-free wireless sensor networks. Although the output power of the wearable energy harvester has been significantly improved, the bandwidth of the energy harvester is still a key issue that hinders the applications of the energy harvester since the output power could dramatically fluctuate within a small excitation range. In this paper, adaptive kinetic energy reallocation (AKER) mechanism is proposed to stabilize the output power of the wearable energy harvester. In contrast to potential energy-based method, the AKER utilizes a pre-programmable and variable frequency-up converter to manipulate the kinetic energy transfer. Thus, the kinetic energy is adaptively controlled to enhance system response such that the output power can be stabilized. A mathematical model is built to predict the system performance and assess the feasibility of AKER mechanism. To validate the AKER, a prototype is fabricated and tested under single pendulum and simulated limb swinging excitations. Both the theoretical and experimental results show that the AKER can effectively stabilize the output power for all the excitation conditions. Compared with conventional energy harvester, the AKER can reduce the power ratio by up to 42 % and generate maximum power of 1.48 mW under single pendulum excitation. Moreover, under simulated limb swinging excitation, the AKER cuts down the power ratio decrease by 46 % and the maximum power reaches 1.47 mW. Based on these results, the AKER demonstrates great advantage in improving the output power stability and provides a novel method to enhance the bandwidth of the energy harvester.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据