4.7 Article

P/N/S synergistic flame retardant holocellulose nanofibrils efficiently pretreated from ternary deep eutectic solvents

期刊

CHEMICAL ENGINEERING JOURNAL
卷 477, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.147142

关键词

Ternary deep eutectic solvent; Holocellulose nanofibrils; Flame retardant; Synergistic effect

向作者/读者索取更多资源

This study obtained flame-resistant holocellulose nanofibrils from bamboo using a ternary deep eutectic solvent and mechanical homogenization. The resulting nanofibers showed excellent fire resistance, mechanical, and optical properties, making them a promising eco-friendly flame-resistant nanomaterial.
Cellulose nanofibrils (CNFs) have widely attracted significant attention due to the excellent mechanical performance, biodegradability, and high surface functionality. However, the high flammability of CNFs commonly restricts their wider application. In this study, the intrinsically flame-resistant holocellulose nanofibrils (HCNFs, which is rich in both cellulose and hemicellulose) were obtained from bamboo under pretreatment using a highly efficient ternary deep eutectic solvent (TDES) and subsequential mechanical homogenization. The phytates and sulfate-containing HCNFs (PHCNFs) displayed nanofibril diameter of 3-5 nm and high aspect ratio of (similar to 500), and the aqueous suspension exhibited colloidal stability and high transmittance. The PHCNF films exhibited excellent fire resistance, mechanical and optical properties. Compared with raw HCNF, the limiting oxygen index (LOI) of PHCNF-120 film was up to 52.5 %, and the total heat release (THR) and peak heat release rate (PHRR) of PHCNF-120 films were significantly reduced by 92.2 % and 82.4 %, respectively. The flame retardant mechanism was attributed to the synergistic effect of P/N/S in both condensed phase and gaseous phases during the burning process. This work provides a novel, efficient strategy for developing eco-friendly flame-resistant and fireproof holocellulose-based nanomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据