4.3 Article

Development of the human primary and secondary jaw joints

期刊

出版社

ELSEVIER GMBH
DOI: 10.1016/j.aanat.2023.152169

关键词

Primary and secondary jaw joints; Temporomandibular joint; Middle ear; Morphogenesis; Human

向作者/读者索取更多资源

This study investigates the development of the primary and secondary temporomandibular joints in humans, focusing on their coexistence and subsequent separation. The findings reveal that both joints develop simultaneously and remain connected for over 6 weeks before separating at around the 18th to 24th week. Understanding the precise timing and functional movements involved in the development of these joints is crucial for comprehending the overall development of the temporomandibular joint.
This study investigates the development of the primary and secondary jaw joints in humans, focusing on their concomitance and subsequent disconnection. Development begins with the primary temporomandibular joint as a connection between Meckel's cartilage and the incus, while the secondary temporomandibular joint develops anteriorly as an articulation between the mandibular condyle and the mandibular fossa. Previous research in mice has provided insights into the morphogenesis of these joints, but their specific development of the 3D morphogenesis in humans remains unclear. To address this gap, histological serial sections of embryos and fetuses ranging from 19 to 230 mm crown-rump length were analyzed. The 3D morphogenesis of the middle ear and the temporomandibular joint was examined, paying attention to the morphological characteristics, timing, and potential mechanisms of movement and disconnection. The primary jaw joint is initially formed at 25 mm (8th week), followed by the appearance of the secondary jaw joint arising at 87 mm (12th week). Both joints persist present simultaneously, until a separation occurs between 150 and 230 mm (18th-24th week). It is remarkable that both joints remain concomitant and function somehow for a period exceeding 6 weeks, with the mechanism of their separation still unclear. Understanding the precise timing and functional movements involved with these temporarily connected joints is crucial for comprehending the overall development of the temporomandibular joint. Further research is needed to explore the molecular and cellular processes underlying these developmental changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据