4.7 Article

Nanowire integration in silica based integrated optical circuits: Limitations and challenges towards quantum computing

期刊

OPTICS AND LASER TECHNOLOGY
卷 170, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.optlastec.2023.110276

关键词

Nanowires; Quantum dot; Waveguides; Silica; Integrated optical circuits; Quantum photonics; Quantum computing

向作者/读者索取更多资源

Optical integrated circuits are seen as a promising platform for developing robust and efficient quantum computers. The integration of multiple single photon sources in these circuits is a critical issue for scalability. This study explores the integration of quantum dots embedded in semiconductor optical nanowires in different platforms and reveals limitations and challenges due to low achievable refractive index contrast. Suitable integration approaches with adequate efficiency are demonstrated.
Optical integrated circuits suggest a very promising platform for the development of robust and efficient quantum computers. A critical issue to their development and scalability is the integration of multiple single photon sources in the circuits. One major category of single photon sources is based on quantum dots that are embedded in semiconductor optical nanowires (NWQD) that allow their accurate handing and deterministic integration. Successful integrations of such nanowires have been reported in high index platforms like silicon or silicon nitride, with adequate coupling efficiency due the modal characteristics compatibility. On the other hand, Silica-on-Silicon is a major integration platform, which combined with new fabrication approaches like direct laser writing, for the definition of optical structures with refractive index modification, can provide the fabrication of highly optimized and tailor-made circuits by rapid prototyping. Considering for the first time the integration scenario of NWQD in laser written silica-based waveguides it is shown that the low (similar to 10(-3)) achievable refractive index contrast imposes strict limitations on the compatibility of such waveguides with NWQD resulting in general in low coupling efficiency. By considering several design and fabrication issues, suitable integration approaches with adequate efficiency are demonstrated, while also the limitations and challenges are revealed thus triggering new research directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据