4.8 Article

Synthesis-Kinetics of Violet- and Blue-Emitting Perovskite Nanocrystals with High Brightness and Superior Stability toward Flexible Conversion Layer

期刊

SMALL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202308896

关键词

CsPbCl3; ion exchange; ligand; nanocrystals; photoluminescence

向作者/读者索取更多资源

The synergistic and post-treatment kinetics were studied to create highly bright and stable perovskite nanocrystals. Ligand and ion exchange mechanism were evaluated to improve the photoluminescence efficiency and stability. The results showed that the treated nanocrystals exhibited high efficiency and stability, suggesting potential applications in optoelectronics.
The low photoluminescence (PL) efficiency and unstable features of small blue-emitting CsPbX3 nanocrystals (NCs) greatly limit their applications in optoelectronics field. Herein, the synergistic and post-treatment kinetics are studied to create highly bright and anomalous stable violet (peak position of approximate to 408 nm) and blue (peak position of similar to 466 nm) emitting perovskite NCs. Ligand and ion exchange mechanism are systematic studied by the evolution of absorption, PL, and fluorescence lifetime to evaluate ligand bonding, defect engineering, and non-radiative recombination. Didodecyl dimethyl mmonium chloride (DDAC) and CuX2 post-synergistic treatment created DDAC-CsPbCl3-CuCl2 and DDAC-CsPbCl3-CuBr2 NCs that remained the phase composition, morphology, and size of CsPbCl3 NCs. The PL efficiencies are drastically increased to 42 and 85% for violet- and blue-emitting NCs, respectively. The stability test indicated that the NCs enable against various harsh conditions (e.g., ultraviolet light irradiation and heat-treatment). The NCs retained their initial PL efficiency after 2 months under ambient conditions and UV light irradiation. These NCs also exhibited high stability after heat-treatment at 120 degree celsius. The emitting NCs embedded in flexible films still revealed bright PL and high stability, suggesting current results provide a new avenue for the application in the field of optoelectronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据