4.6 Article

An atomistic study on grain-size and temperature effects on mechanical properties of polycrystal CoCrFeNi high-entropy alloys

期刊

MATERIALS TODAY COMMUNICATIONS
卷 37, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtcomm.2023.107264

关键词

High-entropy alloys; Grain size; Temperature; Twinning; Phase transition

向作者/读者索取更多资源

The influence of grain size and temperature on the mechanical properties of polycrystalline CoCrFeNi HEAs was investigated via molecular dynamics simulations. The results showed a correlation between tensile strength and dislocation density, and an increase in tensile strength at low temperatures was attributed to an increase in dislocation density.
The origin of the outstanding mechanical properties of high-entropy alloys (HEAs) is still elusive. In this paper, we have investigated the influence of grain size and temperature on the mechanical properties of polycrystalline CoCrFeNi HEAs via molecular dynamics simulations. The critical grain size for the inverse Hall-Petch effect in CoCrFeNi HEAs is approximately 11.65 nm. During the stage of the positive Hall-Petch effect (where smaller grain sizes lead to higher tensile strength), there is a positive correlation between the tensile strength and dislocation density in CoCrFeNi HEAs. The higher tensile strength at low temperatures in CoCrFeNi HEAs is also attributed to an increase in dislocation density. At low temperatures, the reduced thermal vibrations of atoms slow down the motion of dislocations, leading to an increased storage time of dislocations within the crystal. In the stage of the inverse Hall-Petch effect, due to a significant reduction in grain size, the storage capacity of dislocations within grains decreases. This leads to the accumulation of more dislocations at grain boundaries, forming defects, and consequently causing a decrease in the tensile strength of CoCrFeNi HEAs as the grain size decreases. Our results might be helpful in material design of polycrystal HEAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据