4.6 Article

Generation of an accurate CCSD(T)/CBS data set and assessment of DFT methods for the binding strengths of group I metal-nucleic acid complexes

期刊

FRONTIERS IN CHEMISTRY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fchem.2023.1296787

关键词

DNA; RNA; alkali metals; biomolecules; chemical structure; interaction energies; computational chemistry

向作者/读者索取更多资源

This study generates a comprehensive dataset of accurate binding energies between group I metals and nucleic acids. By testing various computational methods and analyzing the results, the most accurate methods are determined. These findings are important for understanding the role of group I metals in the environment and human biology, designing metal sensors, developing biomaterials, and improving computational methods for studying metal-nucleic acid interactions.
Accurate information about interactions between group I metals and nucleic acids is required to understand the roles these metals play in basic cellular functions, disease progression, and pharmaceuticals, as well as to aid the design of new energy storage materials and nucleic acid sensors that target metal contaminants, among other applications. From this perspective, this work generates a complete CCSD(T)/CBS data set of the binding energies for 64 complexes involving each group I metal (Li+, Na+, K+, Rb+, or Cs+) directly coordinated to various sites in each nucleic acid component (A, C, G, T, U, or dimethylphosphate). This data have otherwise been challenging to determine experimentally, with highly accurate information missing for many group I metal-nucleic acid combinations and no data available for the (charged) phosphate moiety. Subsequently, the performance of 61 DFT methods in combination with def2-TZVPP is tested against the newly generated CCSD(T)/CBS reference values. Detailed analysis of the results reveals that functional performance is dependent on the identity of the metal (with increased errors as group I is descended) and nucleic acid binding site (with larger errors for select purine coordination sites). Over all complexes considered, the best methods include the mPW2-PLYP double-hybrid and omega B97M-V RSH functionals (<= 1.6% MPE; <1.0 kcal/mol MUE). If more computationally efficient approaches are required, the TPSS and revTPSS local meta-GGA functionals are reasonable alternatives (<= 2.0% MPE; <1.0 kcal/mol MUE). Inclusion of counterpoise corrections to account for basis set superposition error only marginally improves the computed binding energies, suggesting that these corrections can be neglected with little loss in accuracy when using larger models that are necessary for describing biosystems and biomaterials. Overall, the most accurate functionals identified in this study will permit future works geared towards uncovering the impact of group I metals on the environment and human biology, designing new ways to selectively sense harmful metals, engineering modern biomaterials, and developing improved computational methods to more broadly study group I metal-nucleic acid interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据