4.6 Article

Chemical etching enhanced nanosecond pulsed laser micromachining: An experimental and numerical investigation

期刊

JOURNAL OF MANUFACTURING PROCESSES
卷 108, 期 -, 页码 384-394

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jmapro.2023.11.017

关键词

Pulsed laser micromachining; Laser ablation; Chemical etching; Modeling

向作者/读者索取更多资源

A chemical etching enhanced PLM (CE-PLM) technique was developed in this study, utilizing hydrogen peroxide (H2O2) as the liquid confinement to enhance the laser ablation rate and efficiency through the synergistic effect of laser ablation and ultrafast chemical etching. The findings contribute to enhancing the efficiency and capability of PLM techniques for broader industrial applications.
Nanosecond pulsed laser micromachining (PLM) under liquid confinement is a highly precise, flexible, efficient, and non-contact manufacturing process being used in widespread applications. The process efficiency of the PLM as determined by the laser ablation rate, however, often quickly reaches saturation with the increase of laser energy. This is ascribed to the screening effect of laser-induced plasma that absorbs part of incident energy. In this study, a chemical etching enhanced PLM (CE-PLM) is developed to tackle this challenge. By replacing water (H2O) with an environmentally friendly and active liquid confinement - hydrogen peroxide (H2O2), single-shot laser ablation experiments were firstly performed on different metallic materials to evaluate the considerably enhanced ablation rate. Then, the beneficial effects of H2O2 on PLM applications including micro-drilling and micro-grooving were investigated. The enhanced ablation rate and PLM efficiency were attributed to the synergistic effect of laser ablation and ultrafast chemical etching. Moreover, a physics-based model was developed to elucidate the process mechanism, with focus on revealing the contribution of chemical etching to the material removal during CE-PLM as affected by laser processing parameters. The findings of this study will contribute to enhancing the efficiency and capability of PLM techniques towards broader industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据