4.8 Article

Effects of mechanical pressure on anion exchange membrane water electrolysis: A non-negligible yet neglected factor

期刊

JOURNAL OF POWER SOURCES
卷 590, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2023.233802

关键词

Mechanical pressure; Porous electrodes; Anion exchange membrane water electrolysis

向作者/读者索取更多资源

This study comprehensively investigates the effects of mechanical pressure on the performance of anion exchange membrane water electrolysis (AEMWE) cells. It is found that a mechanical pressure of approximately 0.5 MPa can effectively suppress internal resistance and charge transfer resistance, while slightly increasing mass diffusion resistance and hydrogen crossover.
Commercialized implementations of anion exchange membrane water electrolysis (AEMWE) require stable operation at high current density. To achieve this, ohmic, electrochemical and concentration polarizations are supposed to be exceedingly suppressed. Among all crucial materials, porous electrodes with catalyst coatings extensively affect the above polarizations, which are highly sensitive to specific mechanical pressure for cell assembly. However, the imposed mechanical pressure and its effects on cell performance are rarely reported in AEMWE cells. Here, quantitative characterizations of mechanical pressure and its effects on i) physical properties of catalyst coated electrodes and ii) corresponding single-cell performance are comprehensively investigated. First, the imposed mechanical pressure on membrane electrode assembly (MEA) is controlled by different total thickness gaps between anode/cathode and poly-tetra-fluoroethylene (PTFE) gaskets (Delta d = 0, 100, 200, 300 mu m). Second, the above resulted distributions of mechanical pressure are quantitatively studied by a mechanical pressure tracking method. Third, the influence of the mechanical pressure on the physical properties of the electrodes and cell performance are demonstrated. It is proved that the mechanical pressure of ca. 0.5 MPa is comprehensively beneficial for suppressing internal resistance (R omega) and charge transfer resistance (Rct), with slightly increased mass diffusion resistance (Rmd) and hydrogen crossover. This study unveils the intrinsic effects of mechanical pressure on cell performance and provides critical insights into baseline benchmarking and single cell even stack optimization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据