4.7 Article

Ratiometric fluorometric and colorimetric dual-signal sensing platform for rapid analyzing Cr(VI), Ag(I) and HCHO in food and environmental samples based on N-doped carbon nanodots and o-phenylenediamine

期刊

FOOD CHEMISTRY
卷 437, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2023.137945

关键词

Cr(VI) Ag(I) and HCHO; 2 3-diaminophenazine (DAP); N-doped carbon nanodots (N-CNDs); o-phenylenediamine (OPD); Ratiometric fluorometric and colorimetric; dual-signal; Sensing platform

向作者/读者索取更多资源

Nitrogen-doped carbon nanodots (N-CNDs) were synthesized using glutathione, and a dual-signal sensing platform for the rapid analysis of Cr(VI), Ag(I), and HCHO was successfully constructed. The platform utilized the fluorescence characteristics of N-CNDs and the fluorescence resonance energy transfer effect, demonstrating excellent selectivity and practical applicability.
Nitrogen-doped carbon nanodots (N-CNDs) were synthesized simply and efficiently using glutathione. The fluorescence emission of N-CNDs at 430 nm was effectively quenched by the fluorophore 2,3-diaminophenazine (DAP), produced through the oxidation of o-phenylenediamine (OPD) under the catalysis of Cr(VI)/Ag(I). This quenching was attributed to the fluorescence resonance energy transfer effect, while a new fluorescence emission at 560 nm was observed. Furthermore, the redox and chromogenic reaction of Cr(VI) and OPD at pH 5.4 could be effectively inhibited by formaldehyde (HCHO), resulting in the activation of N-CNDs fluorescence and the quenching of DAP fluorescence. Consequently, dual-signal sensing platforms for the rapid analysis of Cr(VI) and Ag(I) using N-CNDs/OPD and HCHO using N-CNDs/OPD/Cr(VI) were successfully constructed. By incorporating a masking reagent such as H2O2 for Cr(VI) and Cl- for Ag(I), the established sensing platform exhibited excellent selectivity and practical applicability for detecting Cr(VI), Ag(I), and HCHO in food and environmental samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据