4.7 Article

GABA primes defense responses against Botrytis cinerea in tomato fruit by modulating ethylene and JA signaling pathways

期刊

POSTHARVEST BIOLOGY AND TECHNOLOGY
卷 208, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.postharvbio.2023.112665

关键词

GABA; Botrytis cinerea; Priming; Ethylene signaling pathway; JA signaling pathway; Tomato fruit

向作者/读者索取更多资源

This research aimed to investigate the potential action mechanism of gamma-aminobutyric acid (GABA) in controlling Botrytis cinerea (B. cinerea) in tomato fruit. The findings showed that GABA treatment effectively reduced the disease incidence and lesion diameter of tomato fruit caused by B. cinerea. GABA triggered defense responses and up-regulated the expression of pathogenesis-related genes, while also inhibiting the expression of ethylene synthesis genes.
This research set out to investigate the potential action mechanism of gamma-aminobutyric acid (GABA) in the control of Botrytis cinerea (B. cinerea) in tomato fruit. The findings confirmed that 10 mM GABA treatment effectively lowered the disease incidence and lesion diameter of tomato fruit caused by B. cinerea. Meanwhile, GABA treatment maintained lower electrical conductivity, color change index and lycopene content. GABA alone had little effect on most disease resistance indexes, but it triggered faster and stronger defense responses after B. cinerea infection. These responses included increases in total phenolics and flavonoids accumulation as well as the activities of chitinase (CHI), beta-1,3-glucanase (GLU), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and up-regulated expression of the pathogenesis-related genes (SlPR1, SlPR2a, SlPR2b, SlPR3a, SlPR3b and SlPR-STH2). Furthermore, GABA inhibited the expression of key synthesis genes of ethylene (SlACS2, SlACS4 and SlACO1) and the accumulation of a key metabolic intermediate 1-Aminocyclo-propane-l-carboxylic acid (ACC) in non-infected fruit, leading to a slight reduction in ethylene production. However, it also reduced the ethylene burst carried on by B. cinerea infection at the early storage and restored the ethylene peak at the end of storage. Furthermore, GABA up-regulated the expression level of SlERF6 directly but induced the up-regulation of SlERF2, SlERF.A4, SlERF.B12, SlERF.C6 and SlERF.H9 in a primed manner. In addition, GABA pretreatment markedly enhanced jasmonic acid (JA) content by activating the transcription of JA biosynthetic genes (SlLoxD, SlAOC and SlOPR3), up-regulated the downstream receptor gene SlCOI1 and down-regulated the suppressor gene SlJAZ2. These results demonstrated that tomato fruit treated with GABA can efficiently enhance resistance against B. cinerea through defense priming, and ethylene and JA signaling pathways are involved in this process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据