4.7 Article

Multi-phase metamaterials containing framework structures to program thermal expansion and mechanical performances

期刊

COMPOSITE STRUCTURES
卷 327, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2023.117671

关键词

Multi -phase metamaterial; Thermal expansion; Framework structures; Mechanical performance

向作者/读者索取更多资源

This article introduces a metamaterial that combines customizable coefficient of thermal expansion (CTE) with high mechanical performance, and discusses its thermal expansion and mechanical characteristics in detail. Through experiments and analysis, it is found that the programmable thermal expansion and mechanical performance can be achieved by adjusting the geometrical parameters, thus meeting different application requirements.
Due to suffering the thermal and mechanical loadings simultaneously, metamaterials integrating with the customizable coefficient of thermal expansion (CTE) and high mechanical performances are desirable to ensure the thermal and structural stabilities in engineering devices. Hence, various multi-phase metamaterials with programmable CTEs and mechanical performances were developed. Specifically, inspired by the mixture of multiple phases in composites and the rigid rotations of framework structures in materials with negative CTE, a typical pyramid unit was introduced. Additionally, two series of metamaterials were systematically designed, which were constructed in batches from different units through the matrix transformation method. The CTEs of the metamaterials were theoretically established and analyzed. Besides, mechanical performances, including relative density, stiffness and strength were also calculated and discussed. The results suggest that the directionality and magnitude of CTEs are determined by the constructing principle of multi-fold rotations. In addition, the large ranges of programmable CTEs and high load-bearing capacity are available in the devised metamaterials by reasonably modulating the geometrical parameters. The thermal expansion and mechanical performances of the metamaterials could be synchronously programmed. The diversity of the phase configurations and geometrical architectures in the metamaterials offers the opportunity to satisfy manifold requirements in different applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据