4.7 Article

A multi-fidelity stochastic simulation scheme for estimation of small failure probabilities

期刊

STRUCTURAL SAFETY
卷 106, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.strusafe.2023.102397

关键词

Failure probability; Stochastic simulation; Multi-fidelity modeling; Bayesian nonlinear regression; Wind engineering

向作者/读者索取更多资源

This paper presents a multi-fidelity approach for computing small failure probabilities in engineering systems. By integrating information from different levels of model fidelity, the required number of high-fidelity model runs is reduced while maintaining accuracy in estimating failure probabilities.
Computing small failure probabilities is often of interest in the reliability analysis of engineering systems. However, this task can be computationally demanding since many evaluations of expensive high-fidelity models are often required. To address this, a multi-fidelity approach is proposed in this work within the setting of stratified sampling. The overall idea is to reduce the required number of high-fidelity model runs by integrating the information provided by different levels of model fidelity while maintaining accuracy in estimating the failure probabilities. More specifically, strata-wise multi-fidelity models are established based on Gaussian process models to efficiently predict the high-fidelity response and the system collapse from the low-fidelity response. Due to the reduced computational cost of the low-fidelity models, the multi-fidelity approach can achieve a significant speedup in estimating small failure probabilities associated with high-fidelity models. The effectiveness and efficiency of the proposed multi-fidelity stochastic simulation scheme are validated through an application to a two-story two-bay steel building under extreme winds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据