4.7 Article

Highly Concentrated Alginate-Gellan Gum Composites for 3D Plotting of Complex Tissue Engineering Scaffolds

期刊

POLYMERS
卷 8, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/polym8050170

关键词

3D plotting; 3D printing; rapid prototyping; additive manufacturing; biofabrication; alginate; gellan gum; hydrogels; biopolymers; composites

资金

  1. German Federal Ministry for Economic Affairs and Energy (BMWi, ZIM) [KF3359301AK4]
  2. Excellence Initiative of the German Federal and State Governments

向作者/读者索取更多资源

In tissue engineering, additive manufacturing (AM) technologies have brought considerable progress as they allow the fabrication of three-dimensional (3D) structures with defined architecture. 3D plotting is a versatile, extrusion-based AM technology suitable for processing a wide range of biomaterials including hydrogels. In this study, composites of highly concentrated alginate and gellan gum were prepared in order to combine the excellent printing properties of alginate with the favorable gelling characteristics of gellan gum. Mixtures of 16.7 wt % alginate and 2 or 3 wt % gellan gum were found applicable for 3D plotting. Characterization of the resulting composite scaffolds revealed an increased stiffness in the wet state (15%-20% higher Young's modulus) and significantly lower volume swelling in cell culture medium compared to pure alginate scaffolds (similar to 10% vs. similar to 23%). Cytocompatibility experiments with human mesenchymal stem cells (hMSC) revealed that cell attachment was improvedthe seeding efficiency was similar to 2.5-3.5 times higher on the composites than on pure alginate. Additionally, the composites were shown to support hMSC proliferation and early osteogenic differentiation. In conclusion, print fidelity of highly concentrated alginate-gellan gum composites was comparable to those of pure alginate; after plotting and crosslinking, the scaffolds possessed improved qualities regarding shape fidelity, mechanical strength, and initial cell attachment making them attractive for tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据