4.7 Article

Computational verification of conductive Be2Zn monolayer as a superior anode for alkali and alkaline ion batteries

期刊

CHEMICAL ENGINEERING JOURNAL
卷 477, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.147245

关键词

Density-functional theory; 2D anode materials; Planar hypercoordinate motifs; Rechargeable ion batteries

向作者/读者索取更多资源

This article introduces a two-dimensional planar hexacoordinate Be2Zn monolayer predicted by first-principles calculations, which exhibits excellent conductivity and structural stability. It can be used as a high-performance anode material for Li, Na, K, and Ca ion batteries, with ultrahigh theoretical specific capacities and low migration barriers.
Availability of high-performance anode materials remains a great challenge for the clean energy storage systems. Here, we predict the planar hexacoordinate Be2Zn monolayer by first-principles calculations as a highly conductive metallic conductor with all-round structural stabilities. More impressively, the material delivers ultrahigh theoretical specific capacities of 1285, 1928, 1285, and 3856 mA h g-1 for Li, Na, K, and Ca atoms, respectively, with low migration barriers of 18, 7, 4, and 119 meV as well as with favorite average open-circuit voltages of 0.346, 0.366, 0.322, and 0.151 V. Its structural reversibility at the maximum loading concentrations is jointly confirmed by ab-initio molecular dynamics simulations at the upper temperature of 400 K for commercial battery operation under normal ambient environments and subsequent energy minimization calculations. Moreover, the monolayer can tolerate heavy tensile strain up to around 20% far surpassing the structural deformations at different charging stages, which convincingly guarantees its superlative cycle stability during the charging and discharging processes. Taken together, these appealing findings show that the metallic Be2Zn monolayer has great potential to be used as a universal Li, Na, K, and Ca ion battery anode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据