4.7 Article

A Diamond/Graphene/Diamond Electrode for Waste Water Treatment

期刊

NANOMATERIALS
卷 13, 期 23, 页码 -

出版社

MDPI
DOI: 10.3390/nano13233043

关键词

diamond; sandwich structure electrode; water treatment

向作者/读者索取更多资源

Explored the application of boron-doped diamond/graphene/diamond (DGD) sandwich structure electrode in water treatment. The electrode showed improved conductivity and degradation performance, making it suitable for efficient electrocatalytic degradation of organic pollutants.
Boron-doped diamond (BDD) thin film electrodes have great application potential in water treatment. However, the high electrode energy consumption due to high resistance directly limits the application range of existing BDD electrodes. In this paper, the BDD/graphene/BDD (DGD) sandwich structure electrode was prepared, which effectively improved the conductivity of the electrode. Meanwhile, the sandwich electrode can effectively avoid the degradation of electrode performance caused by the large amount of non-diamond carbon introduced by heavy doping, such as the reduction of the electrochemical window and the decrease of physical and chemical stability. The microstructure and composition of the film were characterized by scanning electron microscope (SEM), atomic force microscopy (AFM), Raman spectroscopy, and transmission electron microscopy (TEM). Then, the degradation performance of citric acid (CA), catechol, and tetracycline hydrochloride (TCH) by DGD electrodes was systematically studied by total organic carbon (TOC) and Energy consumption per unit TOC removal (ECTOC). Compared with the single BDD electrode, the new DGD electrode improves the mobility of the electrode and reduces the mass transfer resistance by 1/3, showing better water treatment performance. In the process of dealing with Citric acid, the step current of the DGD electrode was 1.35 times that of the BDD electrode, and the energy utilization ratio of the DGD electrode was 2.4 times that of the BDD electrode. The energy consumption per unit TOC removal (ECTOC) of the DGD electrode was lower than that of BDD, especially Catechol, which was reduced to 66.9% of BDD. The DGD sandwich electrode, as a new electrode material, has good electrochemical degradation performance and can be used for high-efficiency electrocatalytic degradation of organic pollutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据