4.6 Article

Spectra and dynamics of quantum droplets in an optical lattice

期刊

PHYSICAL REVIEW A
卷 108, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.108.053310

关键词

-

向作者/读者索取更多资源

In this article, we investigate the Bogoliubov excitation spectrum of quantum droplets in an optical lattice and classify the collective excitations into different modes. The oscillation frequencies and phononic modes of the droplets are measured through experimental measurements. Furthermore, the instability caused by density fluctuations and the critical filling of atoms are discussed. This work is essential for understanding the superfluid nature of quantum droplets in an optical lattice.
The optical lattice plays an important role in the stability and dynamics of quantum droplets. In this article, we investigate the Bogoliubov excitation spectrum of quantum droplets in an optical lattice in the thermodynamic limit. We classify the collective excitations as synchronous modes, Bloch phononic modes, and site-populationimbalanced modes. For synchronous modes, we measure the dipole oscillation frequencies by quench dynamics with a sudden shift of the optical lattice and the breathing frequencies by Floquet dynamics with a periodic change of the lattice depth. Bloch phononic modes are observable from the Landau critical velocity of the droplets. We further discuss the instability induced by site-dependent density fluctuations and calculate the critical filling of atoms where the growth of lattice vacancy breaks down the translational symmetry of the system. This work makes essential steps towards measuring the excitation spectrum and understanding the superfluid nature of quantum droplets in an optical lattice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据