4.7 Article

Spatiotemporal analysis of extreme precipitation events in the United States at mesoscale: Complex network theory

期刊

JOURNAL OF HYDROLOGY
卷 627, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2023.130440

关键词

Complex network theory; Extreme precipitation events; Event synchronization; Edit distance; Teleconnections

向作者/读者索取更多资源

This study applied complex network theory to analyze precipitation data in the contiguous United States and investigated synchronization patterns of extreme precipitation events across the nation. The results showed that the number of extreme precipitation events in the CONUS has been increasing over the past four decades, with similar slopes in the summer and winter seasons. The study also revealed both local and regional connections as well as teleconnections demonstrating synchronization of extreme precipitation events across scales.
Analyzing the complex behavior of extreme precipitation events (EPEs) is essential to better understand the effect of climate change on surface and subsurface water resources and forecast extreme hydrologic events. In this study, we applied complex network theory to analyze precipitation data in the contiguous United States (CONUS) and investigate synchronization patterns of EPEs across the nation. We constructed the complex network of EPEs using the CPC database, including the precipitation time series available at 3,276 grid points all over the CONUS. To compute the level of similarity between any two grid points, we analyzed their EPE series using two methods: (i) event synchronization (ES) and (ii) time warp edit distance (TWED). The constructed precipitation networks (PNs) for the summer and winter seasons were analyzed, and network measures i.e., degree centrality (DC), partial degree (PD), and mean geographic distance (MGD) were determined. By analyzing the precipitation data from 1979 to 2021, we found that the number of EPEs in the CONUS has been increasing over the past four decades with similar slopes in the summer and winter seasons. We also observed both local and regional connections as well as teleconnections demonstrating EPE synchronizations across scales. Results of the network measures revealed important geographic locations in terms of their connection patterns to other locations for both seasons. Using the Louvain method, we detected seven communities in the network for the summer season and five for the winter season by means of the ES. Similar results were obtained using the TWED.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据