4.7 Review

Marine plastic pollution detection and identification by using remote sensing-meta analysis

期刊

MARINE POLLUTION BULLETIN
卷 197, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.marpolbul.2023.115746

关键词

Remote sensing; Floating plastic; Marine debris; Plastic detection

向作者/读者索取更多资源

Plastic litter in the ocean is a global issue that has serious impacts on the marine ecosystem. Remote sensing technologies have been used to monitor and track marine plastic debris, with high-resolution data playing a key role in monitoring floating marine litter. This systematic review provides an overview of remote sensing data and techniques for detecting marine litter, discussing challenges and opportunities.
The persistent plastic litter, originating from different sources and transported from rivers to oceans, has posed serious biological, ecological, and chemical effects on the marine ecosystem, and is considered a global issue. In the past decade, many studies have identified, monitored, and tracked marine plastic debris in coastal and open ocean areas using remote sensing technologies. Compared to traditional surveying methods, high-resolution (spatial and temporal) multispectral or hyperspectral remote sensing data have been substantially used to monitor floating marine macro litter (FMML). In this systematic review, we present an overview of remote sensing data and techniques for detecting FMML, as well as their challenges and opportunities. We reviewed the studies based on different sensors and platforms, spatial and spectral resolution, ground sampling data, plastic detection methods, and accuracy obtained in detecting marine litter. In addition, this study elaborates the usefulness of high-resolution remote sensing data in Visible (VIS), Near-infrared (NIR), and Short-Wave InfraRed (SWIR) range, along with spectral signatures of plastic, in-situ samples, and spectral indices for automatic detection of FMML. Moreover, the Thermal Infrared (TIR), Synthetic aperture radar (SAR), and Light Detection and Ranging (LiDAR) data were introduced and these were demonstrated that could be used as a supplement dataset for the identification and quantification of FMML.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据