4.7 Article

Atomization of composite liquid fuels in experimental setup with variated gas temperature and pressure

期刊

FUEL
卷 358, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2023.130213

关键词

Atomization; Composite liquid fuel; Overpressure; Elevated temperature; Mixing chambers; Slurry

向作者/读者索取更多资源

This paper presents the experimental research findings on the combined and separate effect of gas temperature and pressure on slurry fuel atomization characteristics. The authors have obtained mathematical expressions to predict the atomization characteristics of composite liquid fuels in power-generating units. Maps have been plotted using dimensionless parameters to help control droplet size, velocity, jet angles, and angles of deviation from the original path.
The efficiency of slurry fuel combustion can be improved by developing a predictive mechanism to estimate fuel atomization characteristics. However, no data are available on slurry fuel atomization behavior under near-real conditions. This paper presents the experimental research findings on the combined and separate effect of gas temperature and pressure on slurry fuel atomization characteristics. The experiments involved composite liquid fuels based on water and filter cake (typical coal processing waste) in variable concentrations. These conditions are the same as in advanced fuel slurry preparation units involving pre-combustors, swirlers, and other elements. In this research we have recorded such spray characteristics as droplet sizes and velocities, volume fraction of droplets with given sizes, jet angle, as well as the angle its deviation from the original trajectory. As has been observed, an increase in the ambient gas temperature leads to a 30% increase in the jet velocity and a 40-60% increase in the volume fraction of small droplets, whereas a pressure increase, on the contrary, reduces these parameters by 11-32% and 100%, respectively). Combined effects of chamber gas pressure and temperature on atomization characteristics have been identified: the variation of atomization characteristics did not exceed 18%. Mathematical expressions have been obtained to predict the atomization characteristics of composite liquid fuels in power-generating units with the known gas temperature and pressure. Maps have been plotted using a set of dimensionless parameters that can help control droplet size, velocity, jet angles, and angles of its deviation from its original path.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据