4.2 Article

Investigating the influence of input angular momentum on independence hypothesis in heavy-ion induced fusion reactions

期刊

NUCLEAR PHYSICS A
卷 1041, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nuclphysa.2023.122786

关键词

Heavy-ion reactions; Complete fusion; Compound nucleus; Angular momentum

向作者/读者索取更多资源

This study validates the compound nucleus theory using heavy ion beams and different targets. By analyzing cross section data and comparing reaction cross section data, the study confirms the validity of the theory, but also observes discrepancies at lower excitation energies.
The experimental verification of compound nucleus theory has successfully been performed for light ion induced reactions using proton , ������-particle beams on different targets. However, such studies using the heavy ion beams are scarce due to the complex nature of heavy ion interaction process. The present work is an attempt to validate the Bohr's independent hypothesis using heavy ion beam of 18O beam on 159Tb targets and 12C on 165Ho targets, forming the same compound nucleus 177Ta. A channel wise analysis of cross section data for evaporation residues produced in 18O+159Tb and 12C+165Ho systems has been performed within the framework of statistical model code PACE4 and found to reasonably agree with the experimental data. Further, a comparison of reaction cross section data for the same evaporation residues produced in the two different systems has been found to follow Bohr's compound nucleus hypothesis at relatively higher excitation energies. However, at relatively lower excitation energies, a significant deviation in the measured cross section data of the same residues in the above mentioned systems have been observed and is attributed to the discrepancies in angular momentum values. Such discrepancies are well explained on the basis of input angular momentum involved in the reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据