4.6 Article

Toxin/antitoxin systems induce persistence and work in concert with restriction/modification systems to inhibit phage

期刊

MICROBIOLOGY SPECTRUM
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.03388-23

关键词

phage inhibition; persistence; toxin/antitoxin systems

向作者/读者索取更多资源

This study reveals that bacteria can defend against phage infection by forming persister cells instead of inducing cell suicide. Furthermore, the restriction/modification systems work together with the toxin/antitoxin system to clear phage DNA. These findings are crucial for the success of phage therapy.
Myriad bacterial anti-phage systems have been described and often the mechanism of programmed cell death is invoked for phage inhibition. However, there is little evidence of suicide under physiological conditions for these systems. Instead of death to stop phage propagation, we show here that persister cells, i.e., transiently-tolerant, dormant, antibiotic-insensitive cells, are formed and survive using the Escherichia coli C496_10 tripartite toxin/antitoxin system MqsR/MqsA/MqsC to inhibit T2 phage. Specifically, MqsR/MqsA/MqsC inhibited T2 phage by 105-fold and reduced T2 titers by 3,000-fold. During T2 phage attack, in the presence of MqsR/MqsA/MqsC, evidence of persistence includes the single-cell physiological change of reduced metabolism (via flow cytometry), increased spherical morphology (via transmission electron microscopy), and heterogeneous resuscitation. Critically, we found restriction-modification systems (primarily EcoK McrBC) work in concert with the toxin/antitoxin system to inactivate phage, likely while the cells are in the persister state. Hence, a phage attack invokes a stress response similar to antibiotics, starvation, and oxidation, which leads to persistence, and this dormant state likely allows restriction/modification systems to clear phage DNA.IMPORTANCETo date, there are no reports of phage infection-inducing persistence. Therefore, our results are important since we show for the first time that a phage-defense system, the MqsRAC toxin/antitoxin system, allows the host to survive infection by forming persister cells, rather than inducing cell suicide. Moreover, we demonstrate that the MqsRAC system works in concert with restriction/modification systems. These results imply that if phage therapy is to be successful, anti-persister compounds need to be administered along with phages. To date, there are no reports of phage infection-inducing persistence. Therefore, our results are important since we show for the first time that a phage-defense system, the MqsRAC toxin/antitoxin system, allows the host to survive infection by forming persister cells, rather than inducing cell suicide. Moreover, we demonstrate that the MqsRAC system works in concert with restriction/modification systems. These results imply that if phage therapy is to be successful, anti-persister compounds need to be administered along with phages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据