4.7 Article

One out of ten independent components shows flipped polarity with poorer data quality: EEG database study

期刊

HUMAN BRAIN MAPPING
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/hbm.26540

关键词

EEG; ICA; indeterminacy; polarity; resting state; scalp topography

向作者/读者索取更多资源

Independent component analysis (ICA) is widely used in scalp-recorded EEG analysis, but the polarity indeterminacy is a limitation. This study investigated how EEGLAB handles polarity indeterminacy and its relationship with the classification of independent components (ICs). The findings suggest that EEGLAB biases towards positive polarity in decomposing high-quality brain ICs.
Independent component analysis (ICA) is widely used today for scalp-recorded EEG analysis. One of the limitations of ICA-based analysis is polarity indeterminacy. It is not easy to find detailed documentations that explains engineering solutions of how the polarity indeterminacy is addressed in a given implementation. We investigated how it is implemented in the case of EEGLAB and also the relation between the outcome of the polarity determination and classification of independent components (ICs) in terms of the estimated nature of the sources (brain, muscle, eye, etc.) using an open database of n = 212 EEG dataset of resting state recordings. We found that (1) about 91% of ICs showed positive-dominant IC scalp topographies; (2) positive-dominant ICs were more associated with brain-originated signals; (3) positive-dominant ICs showed more radial (peaked at 10-30 degrees deviations from the radial axis) dipolar projection pattern with less residual variance from fitting the equivalent current dipole. In conclusion, using the EEGLAB's default ICA algorithm, one out of 10 ICs results in flipping its polarity to negative, which is associated with non-radial dipole orientation with higher residual variance. Thus, we determined EEGLAB biases toward positive polarity in decomposing high-quality brain ICs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据