4.5 Article

Velocity selective spin labeling using parallel transmission

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/mrm.29955

关键词

flow encoding; parallel transmission (pTx); ultra-high field; velocity selective labeling

向作者/读者索取更多资源

Replacing standard excitation pulses with parallel transmit pulses can improve the efficiency of velocity selective labeling.
PurposeUltra-high field (UHF) provides improved SNR which greatly benefits SNR starved imaging techniques such as perfusion imaging. However, transmit field (B1+) inhomogeneities commonly observed at UHF hinders the excitation uniformity. Here we show how replacing standard excitation pulses with parallel transmit pulses can improve efficiency of velocity selective labeling.MethodsThe standard tip-down and tip-up excitation pulses found in a velocity selective preparation module were replaced with tailored non-selective kT-points pulse solutions. Bloch simulations and experimental validation on a custom-built flow phantom and in vivo was performed to evaluate different pulse configurations in circularly polarized mode (CP-mode) and parallel transmit (pTx) mode.ResultsTailored pTx pulses significantly improved velocity selective labeling fidelity and signal uniformity. The transverse magnetization normalized RMS error was reduced from 0.489 to 0.047 when compared to standard rectangular pulses played in CP-mode. Simulations showed that manipulation of time symmetry in the tailored pTx pulses is vital in minimizing residual magnetization. In addition, in vivo experiments achieved a 44% lower RF power output and a shorter pulse duration when compared to using adiabatic pulses in CP-mode.ConclusionUsing tailored pTx pulses for excitation within a velocity selective labeling preparation mitigated transmit field artifacts and improved SNR and contrast fidelity. The improvement in labeling efficiency highlights the potential of using pTx to improve robustness and accessibility of flow-based sequences such as velocity selective spin labeling at ultra-high field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据