4.7 Article

Mathematical modeling of biochar's role in elevating co-composted poultry carcass temperatures

期刊

WASTE MANAGEMENT
卷 173, 期 -, 页码 40-50

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2023.11.008

关键词

Compost; Biochar; Heat transfer; Modeling; Poultry; Temperature

向作者/读者索取更多资源

Incorporating biochar into composting systems can increase compost temperatures. This study developed a heat transfer model for a biochar-amended co-composting system and found that biochar increased thermal conductive losses but also enhanced microbial activity, resulting in an overall increase in total heat unit. When biochar was applied on the surface, it mainly functioned as an insulator.
Previous studies reported that incorporating biochar into composting systems leads to an increase in compost temperatures. Although potential reasons, such as improved microbial activity or increased insulation, were suggested, no study has quantitatively determined the contribution of either aspect. In this study, we developed a heat transfer model for a biochar-amended co-composting system based on the measurements from our two previously published studies conducted to co-compost poultry carcasses with woodchips and wood-based (WBC), distillers grain (DGBC), and cow manure (CMB) biochar. The two composting studies were conducted over three heating cycles, with two turnings separating each cycle. The simulation for the second heating cycle, during which the compost materials began to degrade and were well-mixed, showed an average R2 value of 0.86 and was selected for further analyses. Results from the model suggested that incorporating biochar into the com-posting mixture increases thermal conductive losses. For example, at a biochar addition rate of 13 % (v/v), the predicted longitudinal conductive resistance of the compost pile was reduced by 24.9 %. However, the total heat unit still increased by 11.2 +/- 3.17 % due to the enhancement of microbial activity as supported by elevated oxygen consumption (38.1-61.1 %). When biochar was applied in layers on the surface of the composting bins, its impact on microbial activity was minimal, primarily functioning as an insulator. Under these conditions, the total heat unit was 8.7 % higher than the control. These findings suggest that biochar's primary effect on temperature development was through promoting microbial activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据