4.7 Article

Bandgap regulations of longitudinal wave for a nonlinear metastructure isolator with high-static-low-dynamic stiffness

期刊

COMPOSITE STRUCTURES
卷 327, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2023.117706

关键词

Metastructure; Nonlinear; Bandgap characteristics; Vibration isolation

向作者/读者索取更多资源

In this study, a high-load-capacity local resonance nonlinear metastructure isolator was designed for low-frequency vibration isolation. Through the investigation of the regulation mechanism and the analysis of the transmission rate variation trend, a new approach for vibration isolation was proposed.
Linear structures are inherently difficult to exhibit mechanical properties with high-static-low-dynamic stiffness (HSLDS), which means that linear isolators with these structures struggle to have both high-quality load-bearing capacity and low-frequency isolation ability at the same time. To address this issue, we have designed a high -load-capacity local resonance (LR) nonlinear metastructure isolator for low-frequency vibration isolation of target objects. We reveal the regulation mechanism of longitudinal wave attenuation in such metastructures and conduct comparative study by finite element method (FEM) and experiments for a 3D printed prototype meta -structure. The results show that in specific excitation frequencies, the LR nonlinear metastructure with a cantilever beam oscillator having a natural frequency of 11.7 Hz triggers a LR mechanism. Under the action of the nonlinear isolator, the vibration transmissibility is as low as 10 % at the center frequency of the bandgap under the base excitation. Furthermore, the dispersion equation of such nonlinear metastructures is derived, and through the analysis of the regulation of bandgaps, the variation trend of the transmissibility of nonlinear metastructure isolators is effectively predicted. The calculation method and design idea of this metastructure isolators provide a new approach for vibration isolation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据