4.7 Article

Polyethylene glycol hydrogel coatings for protection of electroactive bacteria against chemical shocks

期刊

BIOELECTROCHEMISTRY
卷 156, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2023.108595

关键词

Hydrogels; Polyethylene glycol; Bioelectrochemical systems; Microbial electrolysis cells; Cell encapsulation

向作者/读者索取更多资源

In this study, polyethylene glycol hydrogels were developed as protective coatings for electroactive biofilms, improving their viability under low resource conditions and ammonia-N shocks.
Loss of bioelectrochemical activity in low resource environments or from chemical toxin exposure is a significant limitation in microbial electrochemical cells (MxCs), necessitating the development of materials that can stabilize and protect electroactive biofilms. Here, polyethylene glycol (PEG) hydrogels were designed as protective coatings over anodic biofilms, and the effect of the hydrogel coatings on biofilm viability under oligotrophic conditions and ammonia-N (NH4+-N) shocks was investigated. Hydrogel deposition occurred through polymerization of PEG divinyl sulfone and PEG tetrathiol precursor molecules, generating crosslinked PEG coatings with long-term hydrolytic stability between pH values of 3 and 10. Simultaneous monitoring of coated and uncoated electrodes co-located within the same MxC anode chamber confirmed that the hydrogel did not compromise biofilm viability, while the coated anode sustained nearly a 4 x higher current density (0.44 A/m2) compared to the uncoated anode (0.12 A/m2) under oligotrophic conditions. Chemical interactions between NH4+-N and PEG hydrogels revealed that the hydrogels provided a diffusive barrier to NH4+-N transport. This enabled PEG-coated biofilms to generate higher current densities during NH4+-N shocks and faster recovery afterwards. These results indicate that PEG-based coatings can expand the non-ideal chemical environments that electroactive biofilms can reliably operate in.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据