4.7 Article

Sustainable Immobilization of β-Glucosidase onto Silver Ions and AgNPs-Loaded Acrylic Fabric with Enhanced Stability and Reusability

期刊

POLYMERS
卷 15, 期 22, 页码 -

出版社

MDPI
DOI: 10.3390/polym15224361

关键词

beta-Glucosidase; immobilization; polyacrylonitrile; silver nanoparticles; reusability

向作者/读者索取更多资源

Modified polymer design has been used successfully for enzyme immobilization, offering improved stability and expanded operational conditions. In this study, amine-terminated polymers were synthesized and utilized for the capture and conversion of silver ions into silver nanoparticles for enzyme immobilization. Extensive characterization techniques were employed to investigate the structural composition and properties of the support materials. The immobilized enzymes exhibited better storage stability and broader pH and temperature adaptability compared to the free enzyme.
Modified polymer design has attracted significant attention for enzyme immobilization, offering promising applications. In this study, amine-terminated polymers were synthesized by incorporating functional groups into polyacrylonitrile using hexamethylenediamine. This work highlights the successful enzyme immobilization strategy using modified polymers, offering improved stability and expanded operational conditions for potential biotechnological applications. The resulting amino groups were utilized to capture silver ions, which were subsequently converted to silver nanoparticles (AgNPs). The obtained materials, AgNPs@TA-HMDA (acrylic textiles coated silver nanoparticles AgNPs) and Ag(I)@TA-HMDA (acrylic textiles coated with Ag ion) were employed as supports for beta-glucosidase enzyme immobilization. The highest immobilization yields (IY%) were achieved with AgNPs@TA-HMDA at 92%, followed by Ag(I)@TA-HMDA at 79.8%, resulting in activity yields (AY%) of 81% and 73%, respectively. Characterization techniques such as FTIR, FE-SEM, EDX, TG/DTG, DSC, and zeta potential were employed to investigate the structural composition, surface morphologies, elemental composition, thermal properties, and surface charge of the support materials. After 15 reuses, the preservation percentages decreased to 76% for AgNPs@TA-HMDA/beta-Glu and 65% for Ag(I)@TA-HMDA/beta-Glu. Storage stability revealed that the decrease in activity for the immobilized enzymes was smaller than the free enzyme. The optimal pH for the immobilized enzymes was broader (pH 5.5 to 6.5) compared to the free enzyme (pH 5.0), and the optimal temperature for the immobilized enzymes was 60(degrees)C, slightly higher than the free enzyme's optimal temperature of 50 degrees C. The kinetic analysis showed a slight increase in Michaelis constant (Km) values for the immobilized enzymes and a decrease in maximum velocity (Vmax), turnover number (Kcat), and specificity constant (Kcat/Km) values compared to the free enzyme. Through extensive characterization, we gained valuable insights into the structural composition and properties of the modified polymer supports. This research significantly contributes to the development of efficient biotechnological processes by advancing the field of enzyme immobilization and offering valuable knowledge for its potential applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据