4.7 Article

Nanoparticles Based on Silver Chloride and Bambusuril[6] for the Fine-Tuning of Biological Activity

期刊

出版社

MDPI
DOI: 10.3390/ijms242216126

关键词

bambusuril[6]; silver chloride nanoparticles; MTT-test; thermal analysis; supramolecular chemistry; antibacterial activity

向作者/读者索取更多资源

Silver nanoparticles (AgNPs), as widely used nanomaterials in medicine, show high popularity and suitability as cancer diagnostic and therapeutic agents as well as effective antibacterial agents. In this study, silver and bambusuril[6] (BU[6])-based nanoparticles were developed for the first time and exhibited high antibacterial activity against E. coli and S. aureus bacteria.
The prevalence of numerous infectious diseases has emerged as a grave concern within the realm of healthcare. Currently, the issue of antibiotic resistance is compelling scientists to explore novel treatment approaches. To combat these infectious diseases, various treatment methods have been developed, harnessing cutting-edge disinfecting nanomaterials. Among the range of metallic nanoparticles employed in medicine, silver nanoparticles (AgNPs) stand out as both highly popular and well-suited for the task. They find extensive utility in cancer diagnosis and therapies and as effective antibacterial agents. The interaction between silver and bacterial cells induces significant structural and morphological alterations, ultimately leading to cell demise. In this study, nanoparticles based on silver and bambusuril[6] (BU[6]) were developed for the first time. These NPs can be used for different biomedical purposes. A simple, single-step, and effective synthesis method was employed to produce bambusuril[6]-protected silver chloride nanoparticles (BU[6]-Ag/AgCl NPs) through the complexation of BU[6] with silver nitrate. The NPs were characterized using X-ray phase analysis (XPS), infrared spectroscopy (IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). When the SEM images were examined, it was seen that the synthesized BU[6]-Ag/AgCl NPs were distributed with homogeneous sizes, and the synthesized NPs were mostly spherical and cubic. The EDS spectra of BU[6]-Ag/AgCl NPs demonstrated the presence of Ag, Cl, and all expected elements. BU[6]-Ag/AgCl NPs showed high antibacterial activity against both E. coli and S. aureus bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据