4.6 Article

Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster

期刊

PLOS GENETICS
卷 12, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1006295

关键词

-

资金

  1. NIH, The National Institute of Diabetes and Digestive Diseases
  2. National Library of Medicine
  3. Korean Visiting Scientist Training Award (KVSTA) [HI13C1282]

向作者/读者索取更多资源

Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (similar to 100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据