4.6 Article

The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems

期刊

PLOS GENETICS
卷 12, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1006386

关键词

-

资金

  1. National Natural Science Foundation of China [31421093, 31130071, 31261140369, 31301285]
  2. Ministry of Science and Technology of China [2016YFD0100902, 2014AA10A601]
  3. Chinese Academy of Sciences [XDA08010102]
  4. Shenzhen Peacock Plan [20130415095710361]
  5. Shenzhen Technology Research Development [JSGG20121026152117750]

向作者/读者索取更多资源

Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1(TQ) were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1(TQ). We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA(1) and GA(3) accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据