4.6 Article

Binding of the Fkh1 Forkhead Associated Domain to a Phosphopeptide within the Mph1 DNA Helicase Regulates Mating-Type Switching in Budding Yeast

期刊

PLOS GENETICS
卷 12, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1006094

关键词

-

资金

  1. National Institute of General Medical Sciences [GM056890, T32 GM07215]
  2. Advanced Opportunity Fellowship through the Science and Medicine Graduate Research Scholars Program at the University of Wisconsin-Madison

向作者/读者索取更多资源

The Saccharomyces cerevisiae Fkh1 protein has roles in cell-cycle regulated transcription as well as a transcription-independent role in recombination donor preference during mating-type switching. The conserved FHA domain of Fkh1 regulates donor preference by juxtaposing two distant regions on chromosome III to promote their recombination. A model posits that this Fkh1-mediated long-range chromosomal juxtaposition requires an interaction between the FHA domain and a partner protein(s), but to date no relevant partner has been described. In this study, we used structural modeling, 2-hybrid assays, and mutational analyses to show that the predicted phosphothreonine-binding FHA domain of Fkh1 interacted with multiple partner proteins. The Fkh1 FHA domain was important for its role in cell-cycle regulation, but no single interaction partner could account for this role. In contrast, Fkh1's interaction with the Mph1 DNA repair helicase regulated donor preference during mating-type switching. Using 2-hybrid assays, co-immunoprecipitation, and fluorescence anisotropy, we mapped a discrete peptide within the regulatory Mph1 C-terminus required for this interaction and identified two threonines that were particularly important. In vitro binding experiments indicated that at least one of these threonines had to be phosphorylated for efficient Fkh1 binding. Substitution of these two threonines with alanines (mph1-2TA) specifically abolished the Fkh1-Mph1 interaction in vivo and altered donor preference during mating-type switching to the same degree as mph1 Delta. Notably, the mph1-2TA allele maintained other functions of Mph1 in genome stability. Deletion of a second Fkh1-interacting protein encoded by YMR144W also resulted in a change in Fkh1-FHA-dependent donor preference. We have named this gene FDO1 for Forkhead one interacting protein involved in donor preference. We conclude that a phosphothreonine-mediated protein-protein interface between Fkh1-FHA and Mph1 contributes to a specific long-range chromosomal interaction required for mating-type switching, but that Fkh1-FHA must also interact with several other proteins to achieve full functionality in this process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据