4.6 Article

Cell-Autonomous and Non-Cell-Autonomous Regulation of a Feeding State-Dependent Chemoreceptor Gene via MEF-2 and bHLH Transcription Factors

期刊

PLOS GENETICS
卷 12, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1006237

关键词

-

资金

  1. National Science Foundation [IOS-1353014]
  2. National Institute of General Medical Sciences of the National Institutes of Health (NIH) [P20 GM103650, P20 GM103554, P20 GM103440]
  3. NIH Office of Research Infrastructure Programs [P40 OD010440]
  4. Division Of Integrative Organismal Systems
  5. Direct For Biological Sciences [1353014] Funding Source: National Science Foundation

向作者/读者索取更多资源

Food and feeding-state dependent changes in chemoreceptor gene expression may allow Caenorhabditis elegans to modify their chemosensory behavior, but the mechanisms essential for these expression changes remain poorly characterized. We had previously shown that expression of a feeding state-dependent chemoreceptor gene, srh-234, in the ADL sensory neuron of C. elegans is regulated via the MEF-2 transcription factor. Here, we show that MEF-2 acts together with basic helix-loop-helix (bHLH) transcription factors to regulate srh-234 expression as a function of feeding state. We identify a cis-regulatory MEF2 binding site that is necessary and sufficient for the starvation-induced down regulation of srh-234 expression, while an E-box site known to bind bHLH factors is required to drive srh-234 expression in ADL. We show that HLH-2 (E/Daughterless), HLH-3 and HLH-4 (Achaete-scute homologs) act in ADL neurons to regulate srh-234 expression. We further demonstrate that the expression levels of srh-234 in ADL neurons are regulated remotely by MXL-3 (Max-like 3 homolog) and HLH-30 (TFEB ortholog) acting in the intestine, which is dependent on insulin signaling functioning specifically in ADL neurons. We also show that this intestine-to-neuron feeding-state regulation of srh-234 involves a subset of insulin-like peptides. These results combined suggest that chemoreceptor gene expression is regulated by both cell-autonomous and non-cell-autonomous transcriptional mechanisms mediated by MEF2 and bHLH factors, which may allow animals to fine-tune their chemosensory responses in response to changes in their feeding state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据