4.6 Article

XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans

期刊

PLOS GENETICS
卷 12, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1006313

关键词

-

资金

  1. Swiss National Science Foundation [SNF 31003A_143313]
  2. Novartis Research Foundation through Friedrich Miescher Institute for Biomedical Research Stiftung
  3. Swiss National Science Foundation (SNF) [31003A_143313] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

XRN2 is a conserved 5'-> 3' exoribonuclease that complexes with proteins that contain XRN2-binding domains (XTBDs). In Caenorhabditis elegans (C. elegans), the XTBD-protein PAXT-1 stabilizes XRN2 to retain its activity. XRN2 activity is also promoted by 3'(2'), 5'-bisphosphate nucleotidase 1 (BPNT1) through hydrolysis of an endogenous XRN inhibitor 3'-phosphoadenosine-5'-phosphate (PAP). Here, we find through unbiased screening that loss of bpnt-1 function suppresses lethality caused by paxt-1 deletion. This unexpected finding is explained by XRN2 autoregulation, which occurs through repression of a cryptic promoter activity and destabilization of the xrn-2 transcript. De-repression appears to be triggered such that more robust XRN2 perturbation, by elimination of both PAXT-1 and BPNT1, is less detrimental to worm viability than absence of PAXT-1 alone. Indeed, we find that two distinct XRN2 repression mechanisms are alleviated at different thresholds of XRN2 inactivation. Like more than 15% of C. elegans genes, xrn-2 occurs in an operon, and we identify additional operons under its control, consistent with a broader function of XRN2 in polycistronic gene regulation. Regulation occurs through intercistronic regions that link genes in an operon, but a part of the mechanisms may allow XRN2 to operate on monocistronic genes in organisms lacking operons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据