4.6 Article

Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 12, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1004819

关键词

-

资金

  1. European Union New and Emerging Science and Technology grant MechPlant
  2. fondation Pierre-Gilles de Gennes
  3. Eshkol Scholarship - Israeli Ministry of Science

向作者/读者索取更多资源

Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据