4.7 Article

Dementia classification using a graph neural network on imaging of effective brain connectivity

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 168, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107701

关键词

EEG; Parkinson ' s disease; Directed structure learning graph neural; network; Effective brain connectivity; Alzheimer's disease

向作者/读者索取更多资源

Alzheimer's disease and Parkinson's disease are common neurodegenerative diseases. Effective brain connectivity has the potential for disease diagnosis. This study proposes a novel directed structure learning GNN model that combines brain connectivity estimations and graph neural network techniques for dementia diagnosis, achieving promising results.
Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common forms of neurodegenerative diseases. The literature suggests that effective brain connectivity (EBC) has the potential to track differences between AD, PD and healthy controls (HC). However, how to effectively use EBC estimations for the research of disease diagnosis remains an open problem. To deal with complex brain networks, graph neural network (GNN) has been increasingly popular in very recent years and the effectiveness of combining EBC and GNN techniques has been unexplored in the field of dementia diagnosis. In this study, a novel directed structure learning GNN (DSL-GNN) was developed and performed on the imaging of EBC estimations and power spectrum density (PSD) features. In comparison to the previous studies on GNN, our proposed approach enhanced the functionality for processing directional information, which builds the basis for more efficiently performing GNN on EBC. Another contribution of this study is the creation of a new framework for applying univariate and multivariate features simultaneously in a classification task. The proposed framework and DSL-GNN are validated in four discrimination tasks and our approach exhibited the best performance, against the existing methods, with the highest accuracy of 94.0% (AD vs. HC), 94.2% (PD vs. HC), 97.4% (AD vs. PD) and 93.0% (AD vs. PD vs. HC). In a word, this research provides a robust analytical framework to deal with complex brain networks containing causal directional information and implies promising potential in the diagnosis of two of the most common neurodegenerative conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据