4.7 Article

Development and application of a semi-detailed model for lithium-Ion battery thermal runaway chemistry

期刊

APPLIED THERMAL ENGINEERING
卷 238, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2023.121991

关键词

Lithium-ion-battery; Thermal runaway; Battery cell chemistry; Venting gas; Semi-detailed model; NCM cathode; Arrhenius equation

向作者/读者索取更多资源

A semi-detailed model has been developed in this study to simulate the thermal runaway chemistry of lithium-ion batteries and mitigate the risks associated with thermal runaway. The model consists of a global part and an elementary reaction mechanism part, which are coupled to capture the interactions between them. The comparison between simulation results and experimental data shows that the semi-detailed model is capable of capturing the correct species trends, indicating its reliability.
To overcome the disadvantages of detailed methodologies and existing simple methodologies for modeling lithium-ion battery thermal runaway chemistry, a semi-detailed model has been developed in the present work. This is important for mitigating battery thermal runaway. The semi-detailed model contains two parts: a 'global part' and an 'elementary reaction mechanism part'. The thermal kinetics parameters of a recently published model are improved so that it can be selected for the 'global part' to model NCM811 (LiNi0.8Co0.1Mn0.1O2), NCM622 (LiNi0.6Co0.2Mn0.2O2), and NCM532 (LiNi0.5Co0.3Mn0.2O2). Temperature and heat release evolutions during battery thermal runaway can be obtained from the simulation of the 'global part'. In the 'elementary reaction mechanism part', 53 reactions with frequency factors and activation energies have been proposed and adopted for describing flammable gas formation, lithium-ion consumption, gas phase interaction, and lithium-ion gas interaction during battery thermal runway. Detailed processes for coupling the 'global part' and the 'elementary reaction mechanism part' as well as solving the 53 reactions are developed, which is the major novelty of this work. Through the coupling of the two parts, chemical venting gas species generation and lithium-ion consumption during the transient thermal runaway process of an NCM811PC (LiNi0.8Co0.1Mn0.1O2 poly-crystalline) pouch cell with nail penetration were calculated and compared with available experimental data in the literature. The comparison shows that the semi-detailed model can give correct species trends, indicating the two parts and their coupling in the semi-detailed model of the present work are reliable. The simulation results with transient venting gas chemical species provide useful insights for stopping or delaying battery thermal runaway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据