4.6 Article

An antibiotic produced by Pseudomonas fluorescens CFBP2392 with antifungal activity against Rhizoctonia solani

期刊

FRONTIERS IN MICROBIOLOGY
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2023.1286926

关键词

antifungal; Pseudomonas fluorescens; biocontrol; Rhizoctonia solani; specialized metabolites; genome

向作者/读者索取更多资源

Pseudomonas fluorescens CFBP2392 has been found to have antibacterial and antifungal activities, and can effectively inhibit the growth of various plant pathogens and affect the ultrastructure of fungi. Genomic analysis identified multiple biosynthetic gene clusters involved in specialized metabolite production, providing a basis for further exploration of the potential of specialized metabolites in this strain.
Pseudomonas fluorescens CFBP2392 has been recognized as a potential biocontrol agent due to its ability to suppress damping-off and root rot disease. This isolate has antibacterial activity in vitro as many other strains from the Pseudomonas fluorescens complex. In this work, the antibacterial and antifungal activity of the strain were explored. Dual culture assays evidenced the antifungal activity of the strain against different phytopathogens: Alternaria sp., Pythium ultimun, Fusarium oxysporum, and Rhizoctonia solani. Purification of an antifungal fraction was performed by preparative HPLC from the chemical extraction of growth media. The fraction showed altered R. solani growth and ultrastructure. Transmission electron microscopy revealed the purified compound induced hypertrophied mitochondria, membranous vesicles, and a higher number of vacuoles in R. salani cytoplasm. In addition, co-cultivation of P. fluorescens CFBP2392 with R. solani resulted in an enlarged and deformed cell wall. To gain genomic insights on this inhibition, the complete genome of P. fluorescens CFBP2392 was obtained with Oxford Nanopore technology. Different biosynthetic gene clusters (BGCs) involved in specialized metabolites production including a lokisin-like and a koreenceine-like cluster were identified. In accordance with the putative BGCs identified, sequence phylogeny analysis of the MacB transporter in the lokisin-like cluster further supports the similarity with other transporters from the amphisin family. Our results give insights into the cellular effects of the purified microbial metabolite in R. solani ultrastructure and provide a genomic background to further explore the specialized metabolite potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据