4.8 Article

Direct probing of single-molecule chemiluminescent reaction dynamics under catalytic conditions in solution

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-43640-1

关键词

-

向作者/读者索取更多资源

This study presents a direct investigation of chemiluminescent reaction dynamics of single molecules in solution. It demonstrates that double-substrate Michaelis-Menten type of catalytic kinetics governs the single-molecule reaction dynamics and reveals heterogeneity among catalyst particles and catalytic sites. The authors also show that single-molecule chemiluminescence imaging can be used to evaluate the thermodynamics of the catalytic system, resolving activation energy at the single-particle level.
Chemical reaction kinetics can be evaluated by probing dynamic changes of chemical substrates or physical phenomena accompanied during the reaction process. Chemiluminescence, a light emitting exoenergetic process, involves random reaction positions and kinetics in solution that are typically characterized by ensemble measurements with nonnegligible average effects. Chemiluminescent reaction dynamics at the single-molecule level remains elusive. Here we report direct imaging of single-molecule chemiluminescent reactions in solution and probing of their reaction dynamics under catalytic conditions. Double-substrate Michaelis-Menten type of catalytic kinetics is found to govern the single-molecule reaction dynamics in solution, and a heterogeneity is found among different catalyst particles and different catalytic sites on a single particle. We further show that single-molecule chemiluminescence imaging can be used to evaluate the thermodynamics of the catalytic system, resolving activation energy at the single-particle level. Our work provides fundamental insights into chemiluminescent reactions and offers an efficient approach for evaluating catalysts. Research into the dynamics of chemical reactions at the single-molecule level is a pivotal undertaking. Here, the authors present a direct investigation of the chemiluminescent reaction dynamics of single molecules in solution, providing spatiotemporally resolved insights into chemical reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据