4.6 Article

Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 12, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1004789

关键词

-

资金

  1. CONACyT Mexico
  2. NIH [R01 AI107034, R01 LM012080, U54 GM111274]
  3. NSF [DMS 1264153]
  4. Direct For Mathematical & Physical Scien [1264153] Funding Source: National Science Foundation
  5. Division Of Mathematical Sciences [1264153] Funding Source: National Science Foundation

向作者/读者索取更多资源

Phylodynamics seeks to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. One way to accomplish this task formulates an observed sequence data likelihood exploiting a coalescent model for the sampled individuals' genealogy and then integrating over all possible genealogies via Monte Carlo or, less efficiently, by conditioning on one genealogy estimated from the sequence data. However, when analyzing sequences sampled serially through time, current methods implicitly assume either that sampling times are fixed deterministically by the data collection protocol or that their distribution does not depend on the size of the population. Through simulation, we first show that, when sampling times do probabilistically depend on effective population size, estimation methods may be systematically biased. To correct for this deficiency, we propose a new model that explicitly accounts for preferential sampling by modeling the sampling times as an inhomogeneous Poisson process dependent on effective population size. We demonstrate that in the presence of preferential sampling our new model not only reduces bias, but also improves estimation precision. Finally, we compare the performance of the currently used phylodynamic methods with our proposed model through clinically-relevant, seasonal human influenza examples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据