4.6 Article

NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies

期刊

PLOS BIOLOGY
卷 14, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.1002472

关键词

-

资金

  1. NIH [R01NS048884/NS086794, R01AG042890, T32NS043124, R01AG30146, P30AG10161, R01AG17917, R01AG15819, K08AG034290, R01AG11101, P30AG19610, R01AG023193, R01NS059873, P50AG16574, U01AG016976, U24NS051872, P50AG23173, K01AG024079]
  2. Belfer Neurodegeneration Consortium by Belfer Family Foundation
  3. Target ALS
  4. Alzheimer's Association
  5. American Federation for Aging Research
  6. Burroughs Welcome Fund
  7. Illinois Department of Public Health
  8. [NICHD-5P30HD024064]

向作者/读者索取更多资源

Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is neuroprotective in numerous preclinical models of neurodegeneration. Here, we show that brain nmnat2 mRNA levels correlate positively with global cognitive function and negatively with AD pathology. In AD brains, NMNAT2 mRNA and protein levels are reduced. NMNAT2 shifts its solubility and colocalizes with aggregated Tau in AD brains, similar to chaperones, which aid in the clearance or refolding of misfolded proteins. Investigating the mechanism of this observation, we discover a novel chaperone function of NMNAT2, independent from its enzymatic activity. NMNAT2 complexes with heat shock protein 90 (HSP90) to refold aggregated protein substrates. NMNAT2's refoldase activity requires a unique C-terminal ATP site, activated in the presence of HSP90. Furthermore, deleting NMNAT2 function increases the vulnerability of cortical neurons to proteotoxic stress and excitotoxicity. Interestingly, NMNAT2 acts as a chaperone to reduce proteotoxic stress, while its enzymatic activity protects neurons from excitotoxicity. Taken together, our data indicate that NMNAT2 exerts its chaperone or enzymatic function in a context-dependent manner to maintain neuronal health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据