4.7 Article

Phosphorus cycling during the Hirnantian glaciation

出版社

ELSEVIER
DOI: 10.1016/j.palaeo.2023.111906

关键词

Phosphorus cycle; Hirnantian; Glaciation; Primary productivity; Sea level; Anoxia

向作者/读者索取更多资源

The Late Ordovician mass extinction occurred during an ice age, with maximum ice coverage and a substantial drop in global sea level. This led to the exposure or shallowing of shallow tropical shelf environments. The study suggests that the burial rate of nutrient phosphorus (P) on shelves was minimal during this glacial period, leading to excess bioavailable P entering the open ocean and stimulating phytoplankton production, which in turn lowered oxygen concentrations.
Unlike other mass extinctions of the Phanerozoic, the Late Ordovician mass extinction took place during an icehouse interval, accompanied by the glaciation of Gondwana. Ice sheets reached their maximum during the Hirnantian and global sea-level dropped substantially. Consequently, the shallow tropical shelf environments of Laurentia and Baltica became subaerially exposed or remaining submerged shelves were characterized by very shallow water-depths. Redox proxies suggest that most shallow shelf settings were well oxygenated to that time, while the global extent of anoxic environments increased, implying that deoxygenation was confined to the open ocean. We speculate that the burial rate of the nutrient phosphorus (P) on shelves was minimal during the Hirnantian glacial maximum (HGM) due to bypass of the shelves in respect to the incoming riverine dissolved load. Hence, a large excess of bioavailable P entering the open ocean would have stimulated phytoplankton production which lowered oxygen concentrations by aerobic respiration.In order to test this hypothesis, we determined reactive P (Preact) contents in two low-latitude carbonate successions (Anticosti Island and Estonia) spanning the HGM. Moreover, we measured total organic carbon (C) concentrations and calculated C/P ratios to evaluate the burial efficiency of P. Samples from both sites are characterized by overall low Preact contents. We observe a decreasing trend in Preact towards the HGM, reaching a minimum during the initial transgression thereafter. C/P ratios suggest efficient P-burial throughout the study interval and, hence, Preact contents are assumed to be a direct measure of primary productivity, P-availability, and P-burial. Using the Preact concentrations, we modeled shelf P-burial fluxes with estimates for global shelf area and sedimentation rates. The model suggests that shelf P-burial fluxes around the HGM were approximately halved due to a reduced shelf area and minimum Preact contents. With the assumption of a constant P-input to the ocean, the proposed scenario serves as a plausible explanation for the observed redox gradients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据