4.7 Article

Hybrid Quantum-Classical Approach to Correlated Materials

期刊

PHYSICAL REVIEW X
卷 6, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.6.031045

关键词

-

资金

  1. NSF [PHY-1066293]
  2. Microsoft Research
  3. European Research Council through ERC Advanced Grant SIMCOFE
  4. Swiss National Science Foundation through NCCR QSIT
  5. Basic Energy Sciences Division of the US Department of Energy [ER-046169]

向作者/读者索取更多资源

Recent improvements in the control of quantum systems make it seem feasible to finally build a quantum computer within a decade. While it has been shown that such a quantum computer can in principle solve certain small electronic structure problems and idealized model Hamiltonians, the highly relevant problem of directly solving a complex correlated material appears to require a prohibitive amount of resources. Here, we show that by using a hybrid quantum-classical algorithm that incorporates the power of a small quantum computer into a framework of classical embedding algorithms, the electronic structure of complex correlated materials can be efficiently tackled using a quantum computer. In our approach, the quantum computer solves a small effective quantum impurity problem that is self-consistently determined via a feedback loop between the quantum and classical computation. Use of a quantum computer enables much larger and more accurate simulations than with any known classical algorithm, and will allow many open questions in quantum materials to be resolved once a small quantum computer with around 100 logical qubits becomes available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据