4.7 Article

Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

期刊

PHYSICAL REVIEW X
卷 6, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.6.021034

关键词

-

资金

  1. EPSRC Doctoral Training Award
  2. Fulbright Scholarship
  3. COST Action [MP1004]

向作者/读者索取更多资源

Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and hence power density. We show via an analytical theory and Monte Carlo simulations that charging is sensitively dependent on the affinity of ions to the pores, and that high capacitances can be obtained for ionophobic pores of widths significantly larger than the ion diameter. Our theory also predicts that charging can be hysteretic with a significant energy loss per cycle for intermediate ionophilicities. We use these observations to explore the parameter regimes in which a capacitance-power-hysteresis trilemma may be avoided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据