4.7 Article

Self-Sustained Irregular Activity in an Ensemble of Neural Oscillators

期刊

PHYSICAL REVIEW X
卷 6, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.6.011015

关键词

-

资金

  1. ITN-EJD COSMOS project [642563]

向作者/读者索取更多资源

An ensemble of pulse-coupled phase oscillators is thoroughly analyzed in the presence of a mean-field coupling and a dispersion of their natural frequencies. In spite of the analogies with the Kuramoto setup, a much richer scenario is observed. The synchronized phase, which emerges upon increasing the coupling strength, is characterized by highly irregular fluctuations: A time-series analysis reveals that the dynamics of the order parameter is indeed high dimensional. The complex dynamics appears to be the result of the nonperturbative action of a suitably shaped phase-response curve. Such a mechanism differs from the often-invoked balance between excitation and inhibition and might provide an alternative basis to account for the self-sustained brain activity in the resting state. The potential interest of this dynamical regime is further strengthened by its (microscopic) linear stability, which makes it quite suited for computational tasks. The overall study has been performed by combining analytical and numerical studies, starting from the linear stability analysis of the asynchronous regime, to include the Fourier analysis of the Kuramoto order parameter, the computation of various types of Lyapunov exponents, and a microscopic study of the interspike intervals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据