4.6 Review

The Effect of Different Biochar Characteristics on Soil Nitrogen Transformation Processes: A Review

期刊

SUSTAINABILITY
卷 15, 期 23, 页码 -

出版社

MDPI
DOI: 10.3390/su152316446

关键词

biochar; nitrogen fixation; mineralisation; denitrification; soil amendment

向作者/读者索取更多资源

This paper reviews the potential of biochar to improve soil properties and mitigate climate change, and explores the influence of different biochar characteristics on different stages of the nitrogen cycle. After adding biochar to soil, it causes changes in microbial biomass and diversity, soil properties, and other parameters, which have significant effects on plant growth.
For the last 30 years, interest has focused on biochar and its potential to store carbon in soil to mitigate climate change whilst improving soil properties for increased crop production and, therefore, could play a critical role in both agricultural sustainability and broader environmental aims. Biochar, a carbonaceous product, is formed from organic feedstock pyrolysised in the absence of air and, therefore, is a potential means of recycling organic waste. However, different feedstock and pyrolysis conditions result in a biochar with a range of altered characteristics. These characteristics influence nitrogen transformation processes in soil and result in the metabolism of different substrates and the formation of different products, which have different effects on agricultural yield. This paper reviews how the production of biochar, from varying feedstock and pyrolysis conditions, results in different biochar characteristics that influence each stage of the nitrogen cycle, namely processes involved in fixation, assimilation, mineralisation and denitrification. The nitrogen cycle is briefly outlined, providing a structure for the following discussion on influential biochar characteristics including carbon composition (whether recalcitrant or rapidly metabolisable), mineral composition, surface area, porosity, cation exchange capacity, inhibitory substances and pH and so on. Hence, after the addition of biochar to soil, microbial biomass and diversity, soil porosity, bulk density, water-holding capacity, cation exchange capacity, pH and other parameters change, but that change is subject to the type and amount of biochar. Hence, products from soil-based nitrogen transformation processes, which may be beneficial for plant growth, are highly dependent on biochar characteristics. The paper concludes with a diagrammatic summation of the influence of biochar on each phase of the nitrogen cycle, which, it is hoped, will serve as a reference for both students and biochar practitioners.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据