4.7 Article

Estimation of above ground biomass, biophysical and quality parameters of spinach (Spinacia Oleracea L.) using Sentinel-2 to support the supply chain

期刊

SCIENTIA HORTICULTURAE
卷 325, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scienta.2023.112641

关键词

Sentinel-2; Spinach; Vegetation indexes; Biomass; Leaf Area Index; Leaf nitrate content

向作者/读者索取更多资源

This study used Sentinel-2 satellite images to estimate biophysical and biochemical parameters of spinach crops and found that canopy-level parameters were estimated more accurately. The estimation of the canopy-scale parameter AGB using MCARI showed the highest accuracy, while the estimation of the leaf-scale parameter LCC using NDWI showed the lowest accuracy. At the field scale, the validation results for AGB estimation using SR were the best.
The estimation of biophysical and biochemical parameters using Sentinel-2 satellite imagery provides crucial information to support agronomic management and logistics for the processing industry, yet this approach has been poorly explored for vegetable crops, such as spinach (Spinacia oleracea L.). For this reason, Sentinel-2 satellite images were used to estimate biophysical and biochemical parameters of open field spinach crops (Above Ground Biomass (AGB), Canopy Nitrogen Content (CNC), Leaf Area Index (LAI), Canopy Chlorophyll Content (CCC), Leaf Dry Matter Content (LDMC), Leaf Nitrogen Content (LNC), Leaf Nitrate Content (LNO3- C) and Leaf Chlorophyll Content (LCC)). Spinach samples were collected in northern Italy in two different growing seasons (2020 - 2021) to measure biophysical and biochemical parameters which were linearly regressed via linear regression k-fold to five vegetation indices retrieved from Sentinel-2 images (MCARI, NDRE, NDVI, NDWI and SR). The AGB estimation models were also validated at field scale using historical data, totally independent from those used for the model calibration, collected by the processing industry between 2018 and 2021. Overall, canopy-level parameters (AGB, LAI, CNC, CCC) were estimated more accurately than leaf-level parameters (LDMC, LNC, LNO3- C, LCC). The highest accuracy was observed for the estimation of the canopy-scale parameter AGB (nRMSE = 9.48 %, R-2 = 0.87) using MCARI, while the lowest accuracy was observed for the estimation of the leaf-scale parameter LCC (nRMSE = 29.24 %, R-2 = 0.01) using NDWI. At field level, the validation of the AGB estimation models showed the highest performance using SR (nRMSE = 19.69 %, R-2 = 0.21). This work demonstrates that using Sentinel-2 satellite images, it is feasible to estimate biophysical and biochemical parameters useful for monitoring the health of spinach crops for both agronomic management and the industrial supply chain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据