4.7 Article

GHGPR-PPIS: A graph convolutional network for identifying protein-protein interaction site using heat kernel with Generalized PageRank techniques and edge self-attention feature processing block

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 168, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107683

关键词

Protein-protein interaction site; Heat kernel; Generalized PageRank techniques; Graph convolutional network; Edge self-attention

向作者/读者索取更多资源

Accurately pinpointing protein-protein interaction site is crucial for understanding protein function and disease mechanisms. In this study, a groundbreaking graph-based computational model called GHGPR-PPIS was proposed, which utilized graph convolutional network and generalized PageRank techniques to predict PPIS. Experimental findings demonstrated the superiority of GHGPR-PPIS compared to other models, with excellent generalization performance and practical applicability.
Accurately pinpointing protein-protein interaction site (PPIS) on the molecular level is of utmost significance for annotating protein function and comprehending the mechanisms underpinning various diseases. While numerous computational methods for predicting PPIS have emerged, they have indeed mitigated the labor and time constraints associated with traditional experimental methods. However, the predictive accuracy of these methods has yet to reach the desired threshold. In this context, we proposed a groundbreaking graph-based computational model called GHGPR-PPIS. This innovative model leveraged a graph convolutional network using heat kernel (GraphHeat) in conjunction with Generalized PageRank techniques (GHGPR) to predict PPIS. Additionally, building upon the GHGPR framework, we devised an edge self-attention feature processing block, further aug-menting the performance of the model. Experimental findings conclusively demonstrated that GHGPR-PPIS surpassed all competing state-of-the-art models when evaluated on the benchmark test set. Impressively, on two distinct independent test sets and a specific protein chain, GHGPR-PPIS consistently demonstrated superior generalization performance and practical applicability compared to the comparative model, AGAT-PPIS. Lastly, leveraging the t-SNE dimensionality reduction algorithm and clustering visualization technique, we delved into an interpretability analysis of the effectiveness of GHGPR-PPIS by meticulously comparing the outputs from different stages of the model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据