4.7 Article

Automatic estimation of surface and probe location for 3D imaging with bidimensional arrays

期刊

NDT & E INTERNATIONAL
卷 141, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ndteint.2023.102990

关键词

Ultrasound imaging; 3D imaging; 2D array; Matrix array; Surface detection; Refraction

向作者/读者索取更多资源

This study develops an ultrasound imaging method for industrial and structural components, which can automatically detect the surface and estimate the probe position and orientation. By fitting the parametric models based on measured surface echoes, the method achieves the measurement of surface echoes and estimation of probe position and orientation. Validation experiments show that this method can accurately detect defects in the component under different probe positions and orientations.
Ultrasound imaging for Non Destructive Testing is frequently performed in an immersion setup, where water is used as coupling medium between the probe and the component under test. For the computation of the time delays needed for beam-forming, the shape of the component surface and probe location and orientation (PLO) must be known. In this work we develop methods for the automatic detection of the surface and the estimation of PLO for 2D array probes. In particular, the methods developed apply to three types of elementary surfaces which are usually found in industrial and structural components: planes, cylinders and spheres. The methods use the measured surface echoes Time of Flight (TOF) to fit parametric models based on ray propagation and reflection on the surface, giving the coordinates and Euler angles that define the PLO relative to the component under test. Validation experiments with four test specimens representing the three types of surfaces are presented . The accuracy and precision of estimated PLO coordinates and angles are analyzed, and a Total Focusing Method (TFM) imaging example is shown achieving a correct detection of artificial defects in the component for a different PLOs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据