4.2 Article

Molecular contamination of an animal facility during and after African swine fever virus infection

期刊

JOURNAL OF VETERINARY RESEARCH
卷 -, 期 -, 页码 -

出版社

SCIENDO
DOI: 10.2478/jvetres-2023-0065

关键词

African swine fever; pigsty; indirect transmission; persistence; risk

向作者/读者索取更多资源

This study investigated the molecular contamination of an animal facility during and after infection with highly pathogenic African swine fever virus. The results showed that maintaining the facility with mechanical cleaning and using personal protection and hand disinfection can efficiently minimize the risk of virus spread. The findings suggest that if stable environmental conditions are assured, the time needed before introducing new herds into previously ASF-affected farm facilities could be shortened, reducing economic losses caused by the disease outbreak.
Introduction The molecular contamination of an animal facility was investigated during and after an infection with highly pathogenic African swine fever virus (ASFV) among domestic pigs. The investigation evaluated the risk of indirect transmission of the disease and indicated points that may facilitate cleaning and disinfection processes. Material and Methods: Six domestic pigs were infected oronasally with the highly pathogenic Georgia 2007 strain. Environmental samples from the floors, walls, rubber floor mats, feeders, drinkers, high-efficiency particulate-absorbing filter covers and doors were collected 7 days post infection (dpi), 7 days later and 24 h after disinfection of the facility. The samples were investigated by real-time PCR and in vitro assays to find genetic traces of ASFV and infectious virus.Results: Typical clinical outcomes for ASF (i.e. fever, apathy, recumbency and bloody diarrhoea) were observed, and all animals died or required euthanasia before or at 9 dpi. No infectious virus was found in environmental samples at the sampling time points. Genetic traces of ASFV were found in all locations except the doors. The initial virus load was calculated using real-time PCR threshold cycle values and was the highest at the drain. A statistically significant decrease of virus load over time was found on non-porous surfaces mechanically cleaned by water (the floor and drain).Conclusion: The gathered data confirmed different routes of virus excretion (oral and nasal, faeces and urine, and aerosol) and showed virus locations and different initial concentrations in the animal facility. Maintaining the facility with mechanical cleaning and using personal protection (gloves) and hand disinfection may efficiently minimise the risk of further virus spread. Together with the results of previously published studies, the present investigations' failure to isolate infectious virus may suggest that if stable environmental conditions are assured, the time needed before the introduction of new herds into previously ASF-affected farm facilities could be shortened and in this way the economic losses caused by the disease outbreak mitigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据